Search results for "Scaffold fabrication"

showing 3 items of 3 documents

Tailoring the Interface of Biomaterials to Design Effective Scaffolds

2018

Tissue engineering (TE) is a multidisciplinary science, which including principles from material science, biology and medicine aims to develop biological substitutes to restore damaged tissues and organs. A major challenge in TE is the choice of suitable biomaterial to fabricate a scaffold that mimics native extracellular matrix guiding resident stem cells to regenerate the functional tissue. Ideally, the biomaterial should be tailored in order that the final scaffold would be (i) biodegradable to be gradually replaced by regenerating new tissue, (ii) mechanically similar to the tissue to regenerate, (iii) porous to allow cell growth as nutrient, oxygen and waste transport and (iv) bioactiv…

0301 basic medicinelcsh:R5-920ScaffoldMaterials sciencelcsh:BiotechnologyBiomedical EngineeringTarget tissueBiomaterialNanotechnology02 engineering and technologyReview021001 nanoscience & nanotechnologyExtracellular matrixScaffold fabrication03 medical and health sciences030104 developmental biologyTissue engineeringlcsh:TP248.13-248.65tissue engineeringchitosanlcsh:Medicine (General)0210 nano-technologybiomaterialsJournal of Functional Biomaterials
researchProduct

Porous biomaterials and scaffolds for tissue engineering

2019

In the present article, an overview of the definition of tissue engineering and scaffold requirements is reported. In particular, scaffold porosity and its relevance for several tissue target regeneration is highlighted. Different scaffold fabrication techniques are reported and explained in details, highlighting advantages and disadvantages for all of these techniques, regarding the specific final applications.

Scaffold fabricationScaffoldsScaffoldMaterials scienceTissue engineeringScaffold fabrication techniquesRegeneration (biology)Settore ING-IND/34 - Bioingegneria IndustrialeNanotechnologyTissue engineeringPorosityPorosity
researchProduct

Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review

2021

The fabrication of 3D scaffolds is under wide investigation in tissue engineering (TE) because of its incessant development of new advanced technologies and the improvement of traditional processes. Currently, scientific and clinical research focuses on scaffold characterization to restore the function of missing or damaged tissues. A key for suitable scaffold production is the guarantee of an interconnected porous structure that allows the cells to grow as in native tissue. The fabrication techniques should meet the appropriate requirements, including feasible reproducibility and time- and cost-effective assets. This is necessary for easy processability, which is associated with the large …

ScaffoldFabricationPolymers and PlasticsComputer scienceProcess (engineering)media_common.quotation_subjectOrganic chemistryNanotechnologyReview02 engineering and technologyscaffold010402 general chemistry01 natural sciencesQD241-441Tissue engineeringFunction (engineering)electrospinningmedia_commonSettore ING-IND/24 - Principi Di Ingegneria Chimicatechnology industry and agricultureSettore ING-IND/34 - Bioingegneria IndustrialeGeneral Chemistry021001 nanoscience & nanotechnologyElectrospinning0104 chemical sciencesCharacterization (materials science)Scaffold fabricationElectrospinning Freeze-drying Phase separation Processing Scaffold Tissue engineeringtissue engineeringfreeze-dryingprocessingphase separation0210 nano-technologyPolymers
researchProduct